Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineered ; 13(3): 5551-5563, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35184647

RESUMO

Eriodictyol is a natural flavonoid with many pharmacological effects, such as anti-oxidation, anti-inflammation, anti-tumor, and neuroprotection. Besides, it has been reported that flavonoids play an important role in protein glycosylation. The fucosylation structure is closely associated with processes of various tumor metastases. TSTA3 is involved in the de novo synthesis and can convert cellular GDP-D-mannose into GDP-L-fucose. It was predicted on the STITCH database that eriodictyol interacted with TSTA3. In addition, literature has confirmed that TSTA3 is upregulated in CRC and can regulate the proliferation and migration of breast cancer cells. Herein, the precise effects of eriodictyol on the clone-forming, proliferative, migratory and invasive abilities of CRC cells as well as EMT process were assessed. Moreover, the correlation among eriodictyol, TSTA3, and fucosylation in these malignant behaviors of CRC cells was evaluated, in order to elucidate the underlying mechanism. The current work discovered that eriodictyol inhibited the viability, clone-formation, proliferation, migration, invasion, and EMT of CRC cells, and that these inhibitory effects of eriodictyol on the malignant behavior of CRC cells were reversed by TSTA3 overexpression. Additionally, eriodictyol suppresses fucosylation by downregulating the TSTA3 expression. Results confirmed that fucosylation inhibitor (2-F-Fuc) inhibited clone formation, proliferation, migration, invasion, as well as EMT of CRC cells and eriodictyol treatment further reinforced the suppressing effects of 2-F-Fuc on the malignant behavior of CRC cells. We conclude that eriodictyol suppresses the clone-forming, proliferative, migrative and invasive abilities of CRC cells as well as represses the EMT process by downregulating TSTA3 expression to restrain fucosylation.


Assuntos
Carboidratos Epimerases , Neoplasias Colorretais , Cetona Oxirredutases , Carboidratos Epimerases/antagonistas & inibidores , Carboidratos Epimerases/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Transição Epitelial-Mesenquimal , Flavanonas , Glicosilação , Guanosina Difosfato Fucose/metabolismo , Guanosina Difosfato Fucose/farmacologia , Humanos , Cetona Oxirredutases/antagonistas & inibidores , Cetona Oxirredutases/metabolismo
2.
Biotechnol Prog ; 37(1): e3061, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32748555

RESUMO

Antibody-dependent cellular cytotoxicity (ADCC) is the primary mechanism of actions for several marketed therapeutic antibodies (mAbs) and for many more in clinical trials. The ADCC efficacy is highly dependent on the ability of therapeutic mAbs to recruit effector cells such as natural killer cells, which induce the apoptosis of targeted cells. The recruitment of effector cells by mAbs is negatively affected by fucose modification of N-Glycans on the Fc; thus, utilization of afucosylated mAbs has been a trend for enhanced ADCC therapeutics. Most of afucosylated mAbs in clinical or commercial manufacturing were produced from Fut8-/- Chinese hamster ovary cells (CHO) host cells, generally generating low yields compared to wildtype CHO host. This study details the generation and characterization of two engineered CHOZN® cell lines, in which the enzyme involved in guanosine diphosphate (GDP)-fucose synthesis, GDP mannose-4,6-dehydratase (Gmds) and GDP-L-fucose synthase (FX), was knocked out. The top host cell lines for each of the knockouts, FX-/- and Gmds-/-, were selected based on growth robustness, bulk MSX selection tolerance, production titer, fucosylation level, and cell stability. We tested the production of two proprietary IgG1 mAbs in the engineered host cells, and found that the titers were comparable to CHOZN® cells. The mAbs generated from either KO cell line exhibited loss of fucose modification, leading to significantly boosted FcγRIIIa binding and ADCC effects. Our data demonstrated that both FX-/- and Gmds-/- host cells could replace Fut8-/- CHO cells for clinical manufacturing of antibody therapeutics.


Assuntos
Anticorpos Monoclonais/biossíntese , Carboidratos Epimerases/antagonistas & inibidores , Fucose/metabolismo , Guanosina Difosfato/metabolismo , Hidroliases/antagonistas & inibidores , Cetona Oxirredutases/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Sequência de Bases , Células CHO , Sistemas CRISPR-Cas , Carboidratos Epimerases/genética , Carboidratos Epimerases/metabolismo , Cricetinae , Cricetulus , Glicosilação , Humanos , Hidroliases/genética , Hidroliases/metabolismo , Imunoglobulina G/imunologia , Cetona Oxirredutases/genética , Cetona Oxirredutases/metabolismo , Receptores de IgG/metabolismo
3.
Cell Chem Biol ; 24(12): 1467-1478.e5, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29033318

RESUMO

Fucosylation is a glycan modification critically involved in cancer and inflammation. Although potent fucosylation inhibitors are useful for basic and clinical research, only a few inhibitors have been developed. Here, we focus on a fucose analog with an alkyne group, 6-alkynyl-fucose (6-Alk-Fuc), which is used widely as a detection probe for fucosylated glycans, but is also suggested for use as a fucosylation inhibitor. Our glycan analysis using lectin and mass spectrometry demonstrated that 6-Alk-Fuc is a potent and general inhibitor of cellular fucosylation, with much higher potency than the existing inhibitor, 2-fluoro-fucose (2-F-Fuc). The action mechanism was shown to deplete cellular GDP-Fuc, and the direct target of 6-Alk-Fuc is FX (encoded by TSTA3), the bifunctional GDP-Fuc synthase. We also show that 6-Alk-Fuc halts hepatoma invasion. These results highlight the unappreciated role of 6-Alk-Fuc as a fucosylation inhibitor and its potential use for basic and clinical science.


Assuntos
Alcinos/farmacologia , Antineoplásicos/farmacologia , Carboidratos Epimerases/antagonistas & inibidores , Carcinoma Hepatocelular/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Fucose/farmacologia , Guanosina Difosfato Fucose/biossíntese , Cetona Oxirredutases/antagonistas & inibidores , Neoplasias Hepáticas/tratamento farmacológico , Alcinos/química , Antineoplásicos/química , Carboidratos Epimerases/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/química , Fucose/química , Células HEK293 , Células HeLa , Humanos , Cetona Oxirredutases/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia
4.
J Biomol Screen ; 21(6): 579-89, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27028606

RESUMO

Nonessential enzymes in the staphylococcal wall teichoic acid (WTA) pathway serve as highly validated ß-lactam potentiation targets. MnaA (UDP-GlcNAc 2-epimerase) plays an important role in an early step of WTA biosynthesis by providing an activated form of ManNAc. Identification of a selective MnaA inhibitor would provide a tool to interrogate the contribution of the MnaA enzyme in the WTA pathway as well as serve as an adjuvant to restore ß-lactam activity against methicillin-resistant Staphylococcus aureus (MRSA). However, development of an epimerase functional assay can be challenging since both MnaA substrate and product (UDP-GlcNAc/UDP-ManNAc) share an identical molecular weight. Herein, we developed a nuclear magnetic resonance (NMR) functional assay that can be combined with other NMR approaches to triage putative MnaA inhibitors from phenotypic cell-based screening campaigns. In addition, we determined that tunicamycin, a potent WTA pathway inhibitor, inhibits both S. aureus MnaA and a functionally redundant epimerase, Cap5P.


Assuntos
Parede Celular/efeitos dos fármacos , Espectroscopia de Ressonância Magnética/métodos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Carboidratos Epimerases/antagonistas & inibidores , Carboidratos Epimerases/química , Parede Celular/química , Humanos , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Ácidos Teicoicos/química , Ácidos Teicoicos/metabolismo , Açúcares de Uridina Difosfato/química , Açúcares de Uridina Difosfato/metabolismo , Resistência beta-Lactâmica/efeitos dos fármacos , beta-Lactamases/química , beta-Lactamases/efeitos dos fármacos
5.
Sci Rep ; 6: 23274, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26980148

RESUMO

The bifunctional enzyme UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) plays a key role in sialic acid production. It is different from the non-hydrolyzing enzymes for bacterial cell wall biosynthesis, and it is feed-back inhibited by the downstream product CMP-Neu5Ac. Here the complex crystal structure of the N-terminal epimerase part of human GNE shows a tetramer in which UDP binds to the active site and CMP-Neu5Ac binds to the dimer-dimer interface. The enzyme is locked in a tightly closed conformation. By comparing the UDP-binding modes of the non-hydrolyzing and hydrolyzing UDP-GlcNAc epimerases, we propose a possible explanation for the mechanistic difference. While the epimerization reactions of both enzymes are similar, Arg113 and Ser302 of GNE are likely involved in product hydrolysis. On the other hand, the CMP-Neu5Ac binding mode clearly elucidates why mutations in Arg263 and Arg266 can cause sialuria. Moreover, full-length modelling suggests a channel for ManNAc trafficking within the bifunctional enzyme.


Assuntos
Ácido N-Acetilneuramínico/biossíntese , Regulação Alostérica , Sequência de Aminoácidos , Carboidratos Epimerases/antagonistas & inibidores , Carboidratos Epimerases/química , Domínio Catalítico , Sequência Conservada , Cristalografia por Raios X , Monofosfato de Citidina/análogos & derivados , Monofosfato de Citidina/química , Inibidores Enzimáticos/química , Humanos , Ligação de Hidrogênio , Hidrólise , Cinética , Modelos Moleculares , Ligação Proteica , Estrutura Quaternária de Proteína , Ácidos Siálicos/química , Difosfato de Uridina/química
6.
J Recept Signal Transduct Res ; 36(5): 515-30, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26795501

RESUMO

WbpP encoding UDP-GlcNAC C4 epimerase is responsible for the activation of virulence factor in marine pathogen Vibrio vulnificus (V. vulnificus) and it is linked to many aquatic diseases, thus making it a potential therapeutic target. There are few reported compounds that include several natural products and synthetic compounds targeting Vibrio sp, but specific inhibitor targeting WbpP are unavailable. Here, we performed structure-based virtual screening using chemical libraries such as Binding, TOSLab and Maybridge to identify small molecule inhibitors of WbpP with better drug-like properties. Deficient structural information forced to model the structure and the stable protein structure was obtained through 30 ns of MD simulations. Druggability regions are focused for new lead compounds and our screening protocol provides fast docking of entire small molecule library with screening criteria of ADME/Lipinski filter/Docking followed by re-docking of top hits using a method that incorporates both ligand and protein flexibility. Docking conformations of lead molecules interface displays strong H-bond interactions with the key residues Gly101, Ser102, Val195, Tyr165, Arg298, Val209, Ser142, Arg233 and Gln200. Subsequently, the top-ranking compounds were prioritized using the molecular dynamics simulation-based conformation and stability studies. Our study suggests that the proposed compounds may aid as a starting point for the rational design of novel therapeutic agents.


Assuntos
Carboidratos Epimerases/química , Doenças Transmitidas por Alimentos/tratamento farmacológico , Chumbo/química , Vibrio vulnificus/química , Organismos Aquáticos/genética , Organismos Aquáticos/microbiologia , Organismos Aquáticos/patogenicidade , Sítios de Ligação , Carboidratos Epimerases/antagonistas & inibidores , Carboidratos Epimerases/metabolismo , Desenho de Fármacos , Doenças Transmitidas por Alimentos/microbiologia , Humanos , Chumbo/uso terapêutico , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/uso terapêutico , Relação Estrutura-Atividade , Vibrio vulnificus/efeitos dos fármacos , Vibrio vulnificus/patogenicidade
7.
Carbohydr Res ; 419: 18-28, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26598987

RESUMO

Neisseria meningitidis serogroup A non-hydrolyzing uridine 5'-diphosphate-N-acetylglucosamine (UDP-GlcNAc) 2-epimerase (NmSacA) catalyzes the interconversion between UDP-GlcNAc and uridine 5'-diphosphate-N-acetylmannosamine (UDP-ManNAc). It is a key enzyme involved in the biosynthesis of the capsular polysaccharide [-6ManNAcα1-phosphate-]n of N. meningitidis serogroup A, one of the six serogroups (A, B, C, W-135, X, and Y) that account for most cases of N. meningitidis-caused bacterial septicemia and meningitis. N. meningitidis serogroup A is responsible for large epidemics in the developing world, especially in Africa. Here we report that UDP-ManNAc could be used as a substrate for C-terminal His6-tagged recombinant NmSacA (NmSacA-His6) in the absence of UDP-GlcNAc. NmSacA-His6 was activated by UDP-GlcNAc and inhibited by 2-acetamidoglucal and UDP. Substrate specificity study showed that NmSacA-His6 could tolerate several chemoenzymatically synthesized UDP-ManNAc derivatives as substrates although its activity was much lower than non-modified UDP-ManNAc. Homology modeling and molecular docking revealed likely structural determinants of NmSacA substrate specificity. This is the first detailed study of N. meningitidis serogroup A UDP-GlcNAc 2-epimerase.


Assuntos
Neisseria meningitidis/enzimologia , Uridina Difosfato N-Acetilglicosamina/química , Uridina Difosfato N-Acetilglicosamina/metabolismo , Sequência de Aminoácidos , Carboidratos Epimerases/antagonistas & inibidores , Carboidratos Epimerases/química , Carboidratos Epimerases/genética , Carboidratos Epimerases/metabolismo , Domínio Catalítico , Clonagem Molecular , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Hexosaminas/metabolismo , Hexosaminas/farmacologia , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Neisseria meningitidis/genética , Especificidade por Substrato , Difosfato de Uridina/metabolismo , Difosfato de Uridina/farmacologia
8.
Nat Chem Biol ; 11(9): 728-32, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26147354

RESUMO

The gateway to morphine biosynthesis in opium poppy (Papaver somniferum) is the stereochemical inversion of (S)-reticuline since the enzyme yielding the first committed intermediate salutaridine is specific for (R)-reticuline. A fusion between a cytochrome P450 (CYP) and an aldo-keto reductase (AKR) catalyzes the S-to-R epimerization of reticuline via 1,2-dehydroreticuline. The reticuline epimerase (REPI) fusion was detected in opium poppy and in Papaver bracteatum, which accumulates thebaine. In contrast, orthologs encoding independent CYP and AKR enzymes catalyzing the respective synthesis and reduction of 1,2-dehydroreticuline were isolated from Papaver rhoeas, which does not accumulate morphinan alkaloids. An ancestral relationship between these enzymes is supported by a conservation of introns in the gene fusions and independent orthologs. Suppression of REPI transcripts using virus-induced gene silencing in opium poppy reduced levels of (R)-reticuline and morphinan alkaloids and increased the overall abundance of (S)-reticuline and its O-methylated derivatives. Discovery of REPI completes the isolation of genes responsible for known steps of morphine biosynthesis.


Assuntos
Aldeído Redutase/metabolismo , Carboidratos Epimerases/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas , Morfina/biossíntese , Papaver/metabolismo , Proteínas de Plantas/metabolismo , Aldeído Redutase/genética , Aldo-Ceto Redutases , Alcaloides/biossíntese , Alcaloides/química , Sequência de Bases , Benzilisoquinolinas/química , Benzilisoquinolinas/metabolismo , Bromoviridae/genética , Bromoviridae/metabolismo , Carboidratos Epimerases/antagonistas & inibidores , Carboidratos Epimerases/genética , Sistema Enzimático do Citocromo P-450/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Éxons , Fusão Gênica , Íntrons , Ligases/genética , Ligases/metabolismo , Dados de Sequência Molecular , Morfinanos/química , Morfinanos/metabolismo , Morfina/química , Fases de Leitura Aberta , Ópio/química , Ópio/metabolismo , Oxirredução , Papaver/genética , Proteínas de Plantas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Estereoisomerismo
9.
Comput Biol Med ; 58: 110-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25637777

RESUMO

BACKGROUND: Tuberculosis remains one of the deadliest infectious diseases in humans. It has caused more than 100 million deaths since its discovery in 1882. Currently, more than 5 million people are infected with TB bacterium each year. The cell wall of Mycobacterium tuberculosis plays an important role in maintaining the ability of mycobacteria to survive in a hostile environment. Therefore, we report a virtual screening (VS) study aiming to identify novel inhibitors that simultaneously target RmlB and RmlC, which are two essential enzymes for the synthesis of the cell wall of M. tuberculosis. METHODS: A hybrid VS method that combines drug-likeness prediction, pharmacophore modeling and molecular docking studies was used to indentify inhibitors targeting RmlB and RmlC. RESULTS: The pharmacophore models HypoB and HypoC of RmlB inhibitors and RmlC inhibitors, respectively, were developed based on ligands complexing with their corresponding receptors. In total, 20 compounds with good absorption, distribution, metabolism, excretion, and toxicity properties were carefully selected using the hybird VS method. DISCUSSION: We have established a hybrid VS method to discover novel inhibitors with new scaffolds. The molecular interactions of the selected potential inhibitors with the active-site residues are discussed in detail. These compounds will be further evaluated using biological activity assays and deserve consideration for further structure-activity relationship studies.


Assuntos
Antituberculosos/química , Proteínas de Bactérias/antagonistas & inibidores , Carboidratos Epimerases/antagonistas & inibidores , Parede Celular/efeitos dos fármacos , Descoberta de Drogas/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/metabolismo , Antituberculosos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Carboidratos Epimerases/química , Carboidratos Epimerases/metabolismo , Parede Celular/metabolismo , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/citologia , Conformação Proteica
10.
Proc Natl Acad Sci U S A ; 110(27): E2510-7, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23776209

RESUMO

A cell-based phenotypic screen for inhibitors of biofilm formation in mycobacteria identified the small molecule TCA1, which has bactericidal activity against both drug-susceptible and -resistant Mycobacterium tuberculosis (Mtb) and sterilizes Mtb in vitro combined with rifampicin or isoniazid. In addition, TCA1 has bactericidal activity against nonreplicating Mtb in vitro and is efficacious in acute and chronic Mtb infection mouse models both alone and combined with rifampicin or isoniazid. Transcriptional analysis revealed that TCA1 down-regulates genes known to be involved in Mtb persistence. Genetic and affinity-based methods identified decaprenyl-phosphoryl-ß-D-ribofuranose oxidoreductase DprE1 and MoeW, enzymes involved in cell wall and molybdenum cofactor biosynthesis, respectively, as targets responsible for the activity of TCA1. These in vitro and in vivo results indicate that this compound functions by a unique mechanism and suggest that TCA1 may lead to the development of a class of antituberculosis agents.


Assuntos
Antituberculosos/farmacologia , Benzotiazóis/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Tiofenos/farmacologia , Tuberculose Pulmonar/tratamento farmacológico , Oxirredutases do Álcool , Sequência de Aminoácidos , Animais , Antituberculosos/administração & dosagem , Antituberculosos/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Benzotiazóis/administração & dosagem , Benzotiazóis/química , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Carboidratos Epimerases/antagonistas & inibidores , Carboidratos Epimerases/química , Carboidratos Epimerases/genética , Farmacorresistência Bacteriana , Feminino , Genes Bacterianos , Ensaios de Triagem em Larga Escala , Isoniazida/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Oxirredutases/antagonistas & inibidores , Oxirredutases/química , Oxirredutases/genética , Rifampina/administração & dosagem , Tiofenos/administração & dosagem , Tiofenos/química , Tuberculose Pulmonar/microbiologia
11.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 4): 658-68, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23519675

RESUMO

ADP-L-glycero-D-manno-heptose 6-epimerase (AGME), the product of the rfaD gene, is the last enzyme in the heptose-biosynthesis pathway; it converts ADP-D-glycero-D-manno-heptose (ADP-D,D-Hep) to ADP-L-glycero-D-manno-heptose (ADP-L,D-Hep). AGME contains a catalytic triad involved in catalyzing hydride transfer with the aid of NADP(+). Defective lipopolysaccharide is found in bacterial mutants lacking this gene. Therefore, it is an interesting target enzyme for a novel epimerase inhibitor for use as a co-therapy with antibiotics. The crystal structure of AGME from Burkholderia thailandensis (BtAGME), a surrogate organism for studying the pathogenicity of melioidosis caused by B. pseudomallei, has been determined. The crystal structure determined with co-purified NADP(+) revealed common as well as unique structural properties of the AGME family when compared with UDP-galactose 4-epimerase homologues. They form a similar architecture with conserved catalytic residues. Nevertheless, there are differences in the substrate- and cofactor-binding cavities and the oligomerization domains. Structural comparison of BtAGME with AGME from Escherichia coli indicates that they may recognize their substrate in a `lock-and-key' fashion. Unique structural features of BtAGME are found in two regions. The first region is the loop between ß8 and ß9, affecting the binding affinity of BtAGME for the ADP moiety of ADP-D,D-Hep. The second region is helix α8, which induces decamerization at low pH that is not found in other AGMEs. With the E210G mutant, it was observed that the resistance of the wild type to acid-induced denaturation is related to the decameric state. An in silico study was performed using the Surflex-Dock GeomX module of the SYBYL-X 1.3 software to predict the catalytic mechanism of BtAGME with its substrate, ADP-D,D-Hep. In the in silico study, the C7'' hydroxymethyl group of ADP-D,D-Hep is predicted to form hydrogen bonds to Ser116 and Gln293. With the aid of these interactions, the hydroxyl of Tyr139 forms a hydrogen bond to O6″ of ADP-D,D-Hep and the proton at C6″ orients closely to C4 of NADP(+). Therefore, the in silico study supports a one-base mechanism as a major catalytic pathway, in which Tyr139 solely functions as a catalytic acid/base residue. These results provide a new insight into the development of an epimerase inhibitor as an antibiotic adjuvant against melioidosis.


Assuntos
Burkholderia/enzimologia , Carboidratos Epimerases/química , Carboidratos Epimerases/metabolismo , Adjuvantes Farmacêuticos/química , Adjuvantes Farmacêuticos/uso terapêutico , Animais , Carboidratos Epimerases/antagonistas & inibidores , Domínio Catalítico , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Humanos , Melioidose/tratamento farmacológico , Melioidose/enzimologia , Melioidose/microbiologia , Ligação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
12.
Bioorg Med Chem ; 18(2): 896-908, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19969466

RESUMO

High-throughput screening of 201,368 compounds revealed that 1-(3-(5-ethyl-5H-[1,2,4]triazino[5,6-b]indol-3-ylthio)propyl)-1H-benzo[d]imidazol-2(3H)-one (SID 7975595) inhibited RmlC a TB cell wall biosynthetic enzyme. SID 7975595 acts as a competitive inhibitor of the enzyme's substrate and inhibits RmlC as a fast-on rate, fully reversible inhibitor. An analog of SID 7975595 had a K(i) of 62nM. Computer modeling showed that the binding of the tethered two-ringed system into the active site occurred at the thymidine binding region for one ring system and the sugar region for the other ring system.


Assuntos
Benzimidazóis/farmacologia , Carboidratos Epimerases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Indóis/farmacologia , Mycobacterium tuberculosis/enzimologia , Aorta/citologia , Aorta/efeitos dos fármacos , Benzimidazóis/síntese química , Benzimidazóis/química , Domínio Catalítico , Sobrevivência Celular/efeitos dos fármacos , Simulação por Computador , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Ensaios de Triagem em Larga Escala , Humanos , Indóis/síntese química , Indóis/química , Modelos Químicos , Relação Estrutura-Atividade
13.
Biol Chem ; 390(7): 591-9, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19426133

RESUMO

The key enzyme for the biosynthesis of N-acetylneuraminic acid, from which all other sialic acids are formed, is the bifunctional enzyme UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE). GNE is a highly conserved protein found throughout the animal kingdom. Its highest expression is seen in the liver and placenta. GNE is regulated by a variety of biochemical means, including tetramerization promoted by the substrate UDP-GlcNAc, phosphorylation by protein kinase C and feedback inhibition by CMP-Neu5Ac, which is defect in the human disease sialuria. GNE knock-out in mice leads to embryonic lethality, emphasizing the crucial role of this key enzyme for sialic acid biosynthesis. The metabolic capacity to synthesize sialic acid and CMP-sialic acid upon ManNAc loads is amazingly high. An additional characteristic of GNE is its interaction with proteins involved in the regulation of development, which might play a crucial role in the hereditary inclusion body myopathy. Due to the importance of increased concentrations of tumor-surface sialic acid, first attempts to find inhibitors of GNE have been successful.


Assuntos
Doença , Ácido N-Acetilneuramínico/biossíntese , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Carboidratos Epimerases/antagonistas & inibidores , Carboidratos Epimerases/genética , Carboidratos Epimerases/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/genética
14.
Biochemistry ; 44(20): 7526-34, 2005 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-15895995

RESUMO

Previous studies have reported that insect cell lines lack the capacity to generate endogenously the nucleotide sugar, CMP-Neu5Ac, required for sialylation of glycoconjugates. In this study, the biosynthesis of this activated form of sialic acid completely from endogenous metabolites is demonstrated for the first time in insect cells by expressing the mammalian genes required for the multistep conversion of endogenous UDP-GlcNAc to CMP-Neu5Ac. The genes for UDP-GlcNAc-2-epimerase/ManNAc kinase (EK), sialic acid 9-phosphate synthase (SAS), and CMP-sialic acid synthetase (CSAS) were coexpressed in insect cells using baculovirus expression vectors, but the CMP-Neu5Ac and precursor Neu5Ac levels synthesized were found to be lower than those achieved with ManNAc supplementation due to feedback inhibition of the EK enzyme by CMP-Neu5Ac. When sialuria-like mutant EK genes, in which the site for feedback regulation has been mutated, were used, CMP-Neu5Ac was synthesized at levels more than 4 times higher than that achieved with the wild-type EK and 2.5 times higher than that achieved with ManNAc feeding. Addition of N-acetylglucosamine (GlcNAc), a precursor for UDP-GlcNAc, to the media increased the levels of CMP-Neu5Ac even more to a level 7.5 times higher than that achieved with ManNAc supplementation, creating a bottleneck in the conversion of Neu5Ac to CMP-Neu5Ac at higher levels of UDP-GlcNAc. The present study provides a useful biochemical strategy to synthesize and enhance the levels of the sialylation donor molecule, CMP-Neu5Ac, a critical limiting substrate for the generation of complex glycoproteins in insect cells and other cell culture systems.


Assuntos
Ácido N-Acetilneuramínico do Monofosfato de Citidina/química , Ácido N-Acetilneuramínico do Monofosfato de Citidina/metabolismo , Líquido Intracelular/química , Líquido Intracelular/metabolismo , Mutagênese Sítio-Dirigida , N-Acilneuraminato Citidililtransferase/biossíntese , Spodoptera/enzimologia , Spodoptera/genética , Animais , Arginina/genética , Baculoviridae/enzimologia , Baculoviridae/genética , Carboidratos Epimerases/antagonistas & inibidores , Carboidratos Epimerases/biossíntese , Carboidratos Epimerases/genética , Células Cultivadas , Hexosaminas/química , Hexosaminas/metabolismo , Humanos , Leucina/genética , Manosefosfatos , Mariposas/virologia , N-Acetilexosaminiltransferases/biossíntese , N-Acetilexosaminiltransferases/genética , N-Acilneuraminato Citidililtransferase/genética , Ratos , Doença do Armazenamento de Ácido Siálico/genética , Especificidade por Substrato/genética
16.
Eur J Biochem ; 271(4): 753-9, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14764091

RESUMO

UDPgalactose 4-epimerase (epimerase) catalyzes the reversible conversion between UDPgalactose and UDPglucose and is an important enzyme of the galactose metabolic pathway. The Saccharomyces cerevisiae epimerase encoded by the GAL10 gene is about twice the size of either the bacterial or human protein. Sequence analysis indicates that the yeast epimerase has an N-terminal domain (residues 1-377) that shows significant similarity with Escherichia coli and human UDPgalactose 4-epimerase, and a C-terminal domain (residues 378-699), which shows extensive identity to either the bacterial or human aldose 1-epimerase (mutarotase). The S. cerevisiae epimerase was purified to > 95% homogeneity by sequential chromatography on DEAE-Sephacel and Resource-Q columns. Purified epimerase preparations showed mutarotase activity and could convert either alpha-d-glucose or alpha-d-galactose to their beta-anomers. Induction of cells with galactose led to simultaneous enhancement of both epimerase and mutarotase activities. Size exclusion chromatography experiments confirmed that the mutarotase activity is an intrinsic property of the yeast epimerase and not due to a copurifying endogenous mutarotase. When the purified protein was treated with 5'-UMP and l-arabinose, epimerase activity was completely lost but the mutarotase activity remained unaffected. These results demonstrate that the S. cerevisiae UDPgalactose 4-epimerase is a bifunctional enzyme with aldose 1-epimerase activity. The active sites for these two enzymatic activities are located in different regions of the epimerase holoenzyme.


Assuntos
Saccharomyces cerevisiae/enzimologia , UDPglucose 4-Epimerase/metabolismo , Sequência de Aminoácidos , Arabinose/química , Arabinose/farmacologia , Carboidratos Epimerases/antagonistas & inibidores , Carboidratos Epimerases/isolamento & purificação , Carboidratos Epimerases/metabolismo , Clonagem Molecular , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Dados de Sequência Molecular , Rotação Ocular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , UDPglucose 4-Epimerase/antagonistas & inibidores , UDPglucose 4-Epimerase/genética , UDPglucose 4-Epimerase/isolamento & purificação , Uridina Monofosfato/química , Uridina Monofosfato/farmacologia
17.
J Org Chem ; 69(3): 665-79, 2004 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-14750790

RESUMO

The "epimerisation" of UDP-GlcNAc to ManNAc, the first step in the biosynthesis of sialic acids, is catalyzed by UDP-GlcNAc 2-epimerase. In this paper we report the synthesis of transition state based inhibitors of this enzyme. To mimic the assumed first transition state of this reaction (TS 1), we designed and synthesized the novel UDP-exo-glycal derivatives 1-4. We also report herein the synthesis of 5 and 6, the first C-glycosidic derivatives of 2-acetamidoglucal, and the synthesis of the ketosides 7 and 8, which were designed as bis-substrate analogue and bis- product analogue, respectively, to mimic the second step of the reaction via the assumed second transition state TS 2.


Assuntos
Carboidratos Epimerases/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Difosfato de Uridina/análogos & derivados , Difosfato de Uridina/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Hexosaminas/química , Mimetismo Molecular , Ácidos Siálicos/química , Estereoisomerismo , Difosfato de Uridina/química
18.
J Am Chem Soc ; 125(21): 6348-9, 2003 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-12785757

RESUMO

The hallmarks of pyridine nucleotide-dependent dehydrogenase reactions are the stereo- and regiospecific hydride transfer between the nicotinamide coenzyme and the corresponding substrate. When the hydride is delivered from NAD(P)H to reduce the keto-substrate, the site of attack is always at the carbonyl carbon. However, the apparent regioselectivity of the hydride transfer is reversed when difluoromethylene is used as a carbonyl mimic in the NADH-dependent enzyme, TDP-l-rhamnose synthase, which catalyzes the conversion of TDP-6-deoxy-l-lyxo-4-hexulose to TDP-l-rhamnose. The observed reversed regioselectivity can be explained by two mechanisms. One involves the formation of a carbene intermediate followed by a rearrangement involving 1,2-H shift. This mechanistic proposal is theoretically sound and would represent a rare example implicating the intermediacy of a carbene species in an enzyme reaction. However, our results are also consistent with a second mechanism in which the hydride addition to the difluoromethylene moiety occurs at the difluorinated end, opposite from the site predicted on the basis of the reduction of a normal keto functional group. Such a regioselectivity is well precedented in chemical models because nucleophilic addition to fluoroalkenes prefers a route in which the number of fluorines beta to the electron-rich carbon in the transition state is maximized. In this mechanism, the difluoromethylene group may be regarded as a carbonyl mimic with reversed polarity in enzyme catalysis. While further experiments are needed to discriminate between these mechanistic possibilities, the results reported here suggest that the apparent regioselectivity of hydride transfer in a pyridine nucleotide-dependent enzyme can be changed by altering the electrochemical properties of the reaction center.


Assuntos
Hidrocarbonetos Fluorados/química , NADP/química , Açúcares de Nucleosídeo Difosfato/química , Nucleotídeos de Timina/química , Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Carboidratos Epimerases/antagonistas & inibidores , Inibidores Enzimáticos/química , Hidrocarbonetos Fluorados/metabolismo , Espectroscopia de Ressonância Magnética , NADP/metabolismo , Açúcares de Nucleosídeo Difosfato/metabolismo , Oxirredução , Nucleotídeos de Timina/metabolismo
19.
J Biol Chem ; 278(10): 8035-42, 2003 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-12499362

RESUMO

Sialic acid is a major determinant of carbohydrate-receptor interactions in many systems pertinent to human health and disease. N-Acetylmannosamine (ManNAc) is the first committed intermediate in the sialic acid biosynthetic pathway; thus, the mechanisms that control intracellular ManNAc levels are important regulators of sialic acid production. UDP-GlcNAc 2-epimerase and GlcNAc 2-epimerase are two enzymes capable of generating ManNAc from UDP-GlcNAc and GlcNAc, respectively. Whereas the former enzyme has been shown to direct metabolic flux toward sialic acid in vivo, the function of the latter enzyme is unclear. Here we study the effects of GlcNAc 2-epimerase expression on sialic acid production in cells. A key tool we developed for this study is a cell-permeable, small molecule inhibitor of GlcNAc 2-epimerase designed based on mechanistic principles. Our results indicate that, unlike UDP-GlcNAc 2-epimerase, which promotes biosynthesis of sialic acid, GlcNAc 2-epimerase can serve a catabolic role, diverting metabolic flux away from the sialic acid pathway.


Assuntos
Carboidratos Epimerases/metabolismo , Proteínas de Transporte/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Sequência de Bases , Carboidratos Epimerases/antagonistas & inibidores , Carboidratos Epimerases/genética , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Primers do DNA , Inibidores Enzimáticos/farmacologia , Humanos , Células Jurkat , Ressonância Magnética Nuclear Biomolecular , RNA Mensageiro/genética , Especificidade por Substrato
20.
FEBS Lett ; 521(1-3): 127-32, 2002 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-12067740

RESUMO

Sialic acids comprise a family of terminal sugars essential for a variety of biological recognition systems. UDP-N-acetylglucosamine 2-epimerase catalyzes the first step of their biosynthesis. Periodate-oxidized UDP-N-acetylglucosamine, namely 2',3'-dialdehydo-UDP-alpha-D-N-acetylglucosamine, was found to be an effective inhibitor of this enzyme, compared with the periodate oxidation products of compounds such as UDP, uridine or methyl riboside. It bound covalently to amino acids in the active site causing an irreversible inhibition. This compound may therefore represent a basis for the synthesis of potent inhibitors of UDP-N-acetylglucosamine 2-epimerase and, as a consequence, of the biosynthesis of sialic acids.


Assuntos
Carboidratos Epimerases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Proteínas de Escherichia coli , Ácidos Siálicos/biossíntese , Uridina Difosfato N-Acetilglicosamina/farmacologia , Animais , Linhagem Celular , Inibidores Enzimáticos/química , Estrutura Molecular , Oxirredução , Ácido Periódico , Spodoptera , Uridina Difosfato N-Acetilglicosamina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...